首页> 外文期刊>Journal of the American Helicopter Society >Comparisons of In Situ Ship Air Wakes with Wind Tunnel Measurements and Computational Fluid Dynamics Simulations
【24h】

Comparisons of In Situ Ship Air Wakes with Wind Tunnel Measurements and Computational Fluid Dynamics Simulations

机译:用风洞测量和计算流体动力学模拟比较原位船舶空气尾流

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical simulations using computational fluid dynamics are frequently applied to analyze complex flow fields. However, they have to be validated by matching simulation results to those from canonical flows or experimental measurements. The objective of the present research is to compare results from numerical simulations and wind tunnel measurements for air wakes generated behind ships' superstructures to those from direct in situ measurements. Numerical simulations are performed using COBALT on an unstructured grid system, wind tunnel data are collected from a 4%-scale model, and in situ measurement data are sampled using ultrasonic anemometers mounted above an aft flight deck on a 32.9-m (108 ft)-long research vessel. Reynolds numbers are closely matched for all three approaches concurrently. Two different incoming velocity conditions are compared: a head wind condition and wind 15 degrees off the starboard bow (beta = 0 degrees,-15 degrees, respectively, where beta is the wind yaw angle). Differences in velocity and boundary layers between the three approaches are resolved using unique velocity normalization. The flow structures between beta = 0 degrees and beta = -15 degrees are quite different, i.e., there appears to be strong asymmetric vortical structures over the flight deck for beta = -15 degrees. In general, in situ, computational, and wind tunnel data all show large-scale recirculation motion behind the ship's hangar. However, there are nonnegligible differences between the simulations and wind tunnel measurements compared to the in situ measurements. Differences in velocity angles increase with the yaw angle of the incoming flow.
机译:使用计算流体动力学的数值模拟通常用于分析复杂的流场。但是,必须通过将模拟结果与规范流或实验测量结果相匹配来对其进行验证。本研究的目的是将数值模拟和风洞测量结果与船舶上层建筑后产生的空气尾流与直接现场测量的结果进行比较。使用COBALT在非结构化网格系统上进行数值模拟,从4%比例模型中收集风洞数据,并使用安装在32.9米(108英尺)尾部飞行甲板上方的超声波风速仪对现场测量数据进行采样长的研究船。雷诺数同时对所有这三种方法紧密匹配。比较了两个不同的传入速度条件:头部风向和右舷船首偏离15度(β= 0度,-15度,其中β是风偏角)。使用独特的速度归一化解决了三种方法之间的速度和边界层差异。 beta = 0度和beta = -15度之间的流动结构有很大不同,即,对于beta = -15度,在驾驶舱上方似乎有很强的不对称涡旋结构。通常,原位,计算和风洞数据都显示了飞机机库后面的大规模再循环运动。但是,与现场测量相比,模拟和风洞测量之间的差异不可忽略。速度角的差异随输入流的偏航角而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号