首页> 外文会议>Annual technical conference and exposition of American Filtration Separations Society (AFS) >Solid-Liquid Separation in Bio-Suspension Systems with Compressible Solids and Non-Newtonian / Viscoelastic Fluids Containing Colloidally Dispersed Macromolecules
【24h】

Solid-Liquid Separation in Bio-Suspension Systems with Compressible Solids and Non-Newtonian / Viscoelastic Fluids Containing Colloidally Dispersed Macromolecules

机译:生物悬浮系统中的固液分离,可悬浮固体和含有胶体分散大分子的非牛顿/粘弹性流体

获取原文

摘要

Bio-materials are in general compressible due to a structural break down under actingnormal and shear forces but also due to gas / air fractions which are entrapped. In solid liquidseparation of suspension systems containing solid particles with such properties using pressureand/or centrifugal filtration techniques the filter-cake permeability is pressure and time dependent.At the same time most of the continuous fluid phases in bio-suspensions contain solved orcolloidally dispersed macromolecules which generate non-Newtonian rheological properties likeshear-thinning and viscoelasticity.Filtrate flow through compressible filter cakes consisting of bio material particles was carried out inpressure and / or centrifugal fields like applicable in hyperbaric centrifugation processing(superposition of static pressure and centrifugal fields). The filtration process - filter cake structure -filtrate rheology - relationships are described from a theoretical and experimental point of view. Forfilter cake structure and non-Newtonian filtrate rheology analytics, methods were developed whichallow to transfer the measured material data for the interpretation of processing experiments.As shown in detail, the influence of filter cake compressibility and non-Newtonian filtrate flowbehavior leads to material related optima in filter cake permeability and mass flow rate at specificstatic pressure and /or C-value in filtration / centrifugation processing. The developedanalytical/experimental methodology provides a basis for pre-calculation of processing optima forfiltration processing for complex bio-suspension systems.In the case of dispersed macromolecules in the filtrate its flow behavior in the pore system of thefilter cake can additionally depend on the impact of flow forces on the macromolecular structure. Ifcritical shear or elongation stresses or related deformations are exceeded, colloidally dispersedmacromolecules can change their structure, thus supporting aggregation. This has a strong impacton the flow through the filter cake but can also influence functional properties of the filtrate.Using dynamic light scattering analysis structural changes of macromolecules in bio-suspensionsystems were monitored and related to changes in the flow behavior through packed particle bedsduring filtration processing.
机译:由于作用下的结构分解,生物材料通常是可压缩的 法向力和剪切力,也归因于截留的气体/空气部分。在固体液体中 使用压力和/来分离含有具有此类特性的固体颗粒的悬浮液系统 或离心过滤技术,滤饼的渗透性取决于压力和时间。 同时,生物悬浮液中的大多数连续流体相都含有溶解的或 胶体分散的大分子,产生非牛顿流变特性,例如 剪切稀化和粘弹性。 滤液流过由生物材料颗粒组成的可压缩滤饼 压力和/或离心场,例如适用于高压离心处理 (静压力和离心场的叠加)。过滤过程-滤饼结构- 滤液流变学-关系是从理论和实验的角度进行描述的。为了 滤饼结构和非牛顿滤液流变学分析,开发了方法 允许传输测量的材料数据以解释加工实验。 如详细所示,滤饼可压缩性和非牛顿滤液流量的影响 行为导致在特定条件下滤饼渗透性和质量流率与材料有关的最佳状态 过滤/离心过程中的静压和/或C值。发达的 分析/实验方法学为预先计算加工最佳化提供了基础 复杂生物悬浮系统的过滤处理。 在滤液中分散大分子的情况下,其在微孔系统中的流动行为 滤饼还可以取决于流动力对大分子结构的影响。如果 超过临界剪切或伸长应力或相关变形,胶体分散 大分子可以改变其结构,从而支持聚集。这有很大的影响 通过滤饼的流量,但也会影响滤液的功能特性。 使用动态光散射分析生物悬浮液中大分子的结构变化 监测系统并与通过填充颗粒床的流动行为变化相关 在过滤过程中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号