首页> 外文会议>Conference on mathematics and control in smart structures >Design of robust controllers for smrt structural systems with structured uncertainties
【24h】

Design of robust controllers for smrt structural systems with structured uncertainties

机译:SMRT结构系统具有结构性不确定性的强大控制器设计

获取原文
获取外文期刊封面目录资料

摘要

Effective integration of sensors, actuators and controllers with the structures is key to the success of smart structures. This concept has been manifested in numerous applications of smart structures in the areas such as civil, aerospace and automotive engineering. Control systems to be integrated with the structure is of paramount importance for ensuring the perormance requirements in the presence of modal parameter variations, modeling errors and control effort constraints. The primary uncertainty associated with smart structural systems us the natural frequency variations. Linear Matrix Inequalities (LMIs) can be utilized to incorporate the real parameter uncertainty due to parameter variations and contol input limits in the controller design. One of the challenges in the design of such controllers is the conservatism due to over bounding effect from the multiple constraints. Additional conservation can also come from the approximation of the real parameteric uncertainty due to modal parameter variations as sector bounded nonlinear, time varying or complex valued uncertainty. Using the traditional modal parameter variations as sector bounded nonlinear, time varying or complex valued uncertainty. Using the traditional robustness analysis methods such as small gain theorem in the controller design will result in conservative designs leading to poor performance. In this paper, we present a controller synthesis procedure based on Popov stability results for reducing the conservatism in the design. Robust controllers are deisned for real-parametric uncertainty arising from natural frequency variations in the presence of control input limits. Maximum possible attenuation in the structural response due to finite energy disturbances is also achieved. Trade-off between the robustness versus the control input limit is discussed. The design produce is applied on a smart structural test article and the results are presented.
机译:有效地整合传感器,执行器和控制器的结构是智能结构成功的关键。这种概念在民用,航空航天和汽车工程等领域的智能结构中表现出许多应用。与该结构集成的控制系统对于确保存在模态参数变化,建模误差和控制工作约束时,可以最重要的重要性。与智能结构系统相关的主要不确定性我们是自然频率变化。线性矩阵不等式(LMI)可用于掺入由于参数变化和控制器设计中的输入限制而导致的真实参数不确定性。这种控制器设计的挑战之一是由于来自多个约束的限制效果,因此是保守主义。由于扇区有界非线性,时间变化或复杂的价值不确定性,因此额外的保护也可以来自真实参数不确定性的近似值。使用传统的模态参数变体作为扇区有界非线性,时间变化或复杂的价值不确定性。使用传统的稳健性分析方法,如控制器设计中的小增益定理,将导致保守的设计导致性能不佳。在本文中,我们介绍了一种基于Popov稳定性的控制器合成程序,以降低设计中的保守主义。强大的控制器对来自控制输入限制的存在的自然频率变化产生的真实参数不确定性。还实现了由于有限能量干扰引起的结构响应中的最大可能衰减。讨论了鲁棒性与控制输入限制之间的权衡。设计产品应用于智能结构试验制品,并提出了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号