首页> 外文会议>Medical computing vision and bayesian and graphical models for biomedical imaging >LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images
【24h】

LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images

机译:最新:局部AdapTivE和顺序训练等强度婴儿脑部MR图像的组织分割

获取原文
获取原文并翻译 | 示例

摘要

Accurate segmentation of isointense infant (~6 months of age) brain MRIs is of great importance, however, a very challenging task, due to extremely low tissue contrast caused by ongoing myelination processes. In this work, we propose a novel learning method based on Local AdapTivE and Sequential Training (LATEST) for segmentation. Specifically, random forest technique is employed to train a local classifier (a single decision tree) for each voxel in the common space based on the neighboring training samples from atlases. Then, for each given voxel, all trained nearby individual classifiers (decision trees) are grouped together to form a forest. Moreover, the estimated probabilities are further used as additional source images to train the next set of local classifiers for refining tissue classification. By iteratively training the subsequent classifiers based on the updated tissue probability maps, a sequence of local classifiers can be built for accurate tissue segmentation.
机译:对等强度婴儿(约6个月大)的脑部MRI进行准确的分割非常重要,但是由于正在进行的髓鞘化过程导致组织对比度极低,因此这是一项非常艰巨的任务。在这项工作中,我们提出了一种基于局部AdapTivE和顺序训练(LATEST)的新颖的分割方法。具体地,基于来自地图集的相邻训练样本,采用随机森林技术为公共空间中的每个体素训练局部分类器(单个决策树)。然后,对于每个给定的体素,将所有受过训练的附近个体分类器(决策树)组合在一起以形成森林。此外,估计的概率还用作其他源图像,以训练下一组局部分类器以完善组织分类。通过基于更新的组织概率图迭代训练后续分类器,可以构建一系列局部分类器以进行准确的组织分割。

著录项

  • 来源
  • 会议地点 Athens(GR)
  • 作者单位

    IDEA Lab, Department of Radiology and BRIC,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;

    IDEA Lab, Department of Radiology and BRIC,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Computer Science, University of North Carolina at Chapel Hill,Chapel Hill, NC, USA;

    IDEA Lab, Department of Radiology and BRIC,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;

    IDEA Lab, Department of Radiology and BRIC,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;

    MRI Lab, Department of Radiology and BRIC,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;

    IDEA Lab, Department of Radiology and BRIC,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号