首页> 外文会议>Medical computing vision and bayesian and graphical models for biomedical imaging >A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images
【24h】

A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images

机译:用于DECT图像的肺动脉高压和肺栓塞检测的肺图模型

获取原文
获取原文并翻译 | 示例

摘要

This article presents a novel graph-model approach encoding the relations between the perfusion in several regions of the lung extracted from a geometry-based atlas. Unlike previous approaches that individually analyze regions of the lungs, our method evaluates the entire pulmonary circulatory network for the classification of patients with pulmonary embolism and pulmonary hypertension. An undirected weighted graph with fixed structure is used to encode the network of intensity distributions in Dual Energy Computed Tomography (DECT) images. Results show that the graph-model presented is capable of characterizing a DECT dataset of 30 patients affected with disease and 26 healthy patients, achieving a discrimination accuracy from 0.77 to 0.87 and an AUC between 0.73 and 0.86. This fully automatic graph-model of the lungs constitutes a novel and effective approach for exploring the various patterns of pulmonary perfusion of healthy and diseased patients.
机译:本文提出了一种新颖的图模型方法,该方法编码了从基于几何的图集提取的肺部几个区域的灌注之间的关系。与以前单独分析肺区域的方法不同,我们的方法评估整个肺循环网络以对肺栓塞和肺动脉高压患者进行分类。具有固定结构的无向加权图用于对双能计算机断层扫描(DECT)图像中的强度分布网络进行编码。结果表明,所提供的图形模型能够表征30例受疾病影响的患者和26例健康患者的DECT数据集,辨别精度为0.77至0.87,AUC为0.73至0.86。肺部的这种全自动图形模型构成了一种新颖而有效的方法,用于探索健康和患病患者的各种肺灌注模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号