【24h】

Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging

机译:在MDCT成像中自动诊断间质性肺疾病和肺气肿

获取原文
获取原文并翻译 | 示例

摘要

Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multivalued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.
机译:弥漫性肺部疾病(DLD)包括一组非异质性非肿瘤性疾病,这些异质性疾病是由于炎症模式不同而导致的肺实质受损。主要在间质性肺疾病和肺气肿中使用MDCT进行DLD严重性的表征和量化,是评估新疗法的临床研究中的重要问题。本文开发了一种3D自动化方法,用于检测和诊断弥漫性肺部疾病,例如纤维化/蜂窝结石,毛玻璃和肺气肿。所提出的方法结合了多分辨率3D形态过滤(利用超约束连接成本算子)和基于图的分类,以对实质组织进行全面表征。形态过滤对低衰减和中等衰减的肺区域进行多级分割,并根据粒度标准对其进行分类(多分辨率分析)。因此,在分割后的数据中,CT数据量的原始强度范围会减小到与所使用的分辨率深度相等的级别(通常为10个级别)。这种形态过滤的特异性是在保留其原始形状的同时,提取与它们的邻域相反且尺寸小于分辨率深度的局部组织图案。根据分辨率级别和不同分段分量的邻接关系,建立了描述分段结果的多值层次图。然后,图形节点将丰富其关联组件执行的纹理信息。基于节点属性的图分析重组可对正常和ILD /肺气肿区域的肺实质进行最终分类。它还可以区分同一类疾病的不同类型或发展阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号