首页> 外文会议>Mathematical Methods in Pattern and Image Analysis >Region-driven statistical non rigid registration. Application to model-based segmentation and tracking of the heart in perfusion MRI
【24h】

Region-driven statistical non rigid registration. Application to model-based segmentation and tracking of the heart in perfusion MRI

机译:区域驱动的统计非刚性注册。在基于模型的灌注MRI心脏分割和跟踪中的应用

获取原文
获取原文并翻译 | 示例

摘要

Intensity-based Non Rigid Registration (NRR) techniques using statistical similarity measures have been widely used to address mono- and multimodal image alignment problems in a robust and segmentation-free way. In these approaches, registration is achieved by minimizing the discrepancy between luminance distributions. Classical similarity criteria, including mutual information, f-information and correlation ratio, rely on global luminance statistics over the whole image domain and do not incorporate spatial information. This may lead to inaccurate or geometrically inconsistent (though visually satisfying) alignment of homologous image structures, making these criteria unreliable for atlas-based segmentation purposes. This paper addresses these limitations and presents a region-driven approach to statistical NRR based on regional non-parametric estimates of luminance distributions. The latter are derived from a regional segmentation of the target image which is used as a fixed object/scene template and induces regionalized statistical similarity measures. We provide the expressions of these criteria in the case of generalized information measures and correlation ratio, and derive the corresponding gradient flows over parametric and non-parametric transforms spaces. This approach is then applied to the joint non rigid segmentation and registration of short-axis cardiac perfusion MR sequences using a bi-ventricular heart template. In this framework, region-driven NRR allows for compensating for respiratory/cardiac motion artifacts, and fitting a segmental heart model used for quantitatively assessing regional myocardial perfusion. Experiments have been performed on a 15 pathological subjects database, demonstrating the relevance of region-driven NRR over global NRR in terms of computational performance and registration accuracy with respect to an expert reference.
机译:使用统计相似性度量的基于强度的非刚性配准(NRR)技术已被广泛用于以健壮且无分割的方式解决单峰和多峰图像对齐问题。在这些方法中,通过使亮度分布之间的差异最小化来实现配准。经典的相似性标准(包括互信息,f信息和相关比)依赖于整个图像域的全局亮度统计,并且不包含空间信息。这可能导致同源图像结构的对齐不准确或几何不一致(尽管视觉上令人满意),从而使这些标准对于基于图集的分割目的而言并不可靠。本文解决了这些限制,并提出了一种基于区域驱动的统计NRR的方法,该方法基于亮度分布的区域非参数估计。后者源自目标图像的区域分割,该区域分割用作固定的对象/场景模板并引发区域化的统计相似性度量。我们提供了在广义信息测度和相关比的情况下这些准则的表达式,并推导了参数和非参数变换空间上的相应梯度流。然后将该方法应用于使用双心室心脏模板的联合非刚性分割和短轴心脏灌注MR序列的配准。在此框架中,区域驱动的NRR可以补偿呼吸/心脏运动伪影,并拟合用于定量评估区域心肌灌注的分段心脏模型。已经在15个病理科目的数据库上进行了实验,从相对于专家参考的计算性能和配准精度方面,证明了区域驱动NRR与全局NRR的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号