首页> 外文会议>Mathematical Methods in Medical Imaging >Multiscale wavelet representations for mammographic feature analysis
【24h】

Multiscale wavelet representations for mammographic feature analysis

机译:乳腺X线摄影特征分析的多尺度小波表示

获取原文
获取原文并翻译 | 示例

摘要

Abstract: This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs). !22
机译:摘要:本文介绍了一种通过多分辨率表示来完成乳房X线特征分析的新方法。我们表明,可以从数字乳腺摄影中识别出有效的(非冗余)表示形式,并将其用于增强连续的尺度空间内的特定乳腺摄影特征。小波变换的多分辨率分解提供了一个自然的层次结构,其中嵌入了交互式范式以完成尺度空间特征分析。选择同时位于空间和频率上的小波(或分析函数),会产生强大的图像分析方法。多分辨率和方向选择性(灵长类动物视觉中已知的生物学机制)已根植于小波表示中,并激发了本文介绍的技术。我们的方法包括对完整的多尺度表示进行局部分析。乳房X线照片是从小波系数重建的,并通过比例尺空间中的线性,指数和恒定权重函数进行了增强。通过改善乳腺病理学的可视化,我们可以改善乳腺癌早期检测的变化(提高质量),同时减少对大多数患者进行乳房X线照片评估的时间(降低成本)。 !22

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号