首页> 外文会议>Mathematical Methods in Medical Imaging II >Recognizing elongated objects using invariant surface features and matched filters
【24h】

Recognizing elongated objects using invariant surface features and matched filters

机译:使用不变的表面特征和匹配的滤波器识别细长物体

获取原文
获取原文并翻译 | 示例

摘要

Abstract: ological objects are elongated. This research addresses the issue of recognizing elongated objects from both 2D intensity images and 3D volumes. A mathematical model, called tube model, is developed for this class of objects and is effectively utilized in two stages of recognition. The explicit relationships between geometrical surface features and the object model parameters are quantitatively exploited to automatically locate seeds for recognition. Invariant surface features are used to constrain or hypothesize the objects of interest. The verification of a hypothesis is performed by correlating a matched filter, dynamically generated based on the hypothesis, with the sensor data. The tubes identified in such a local recognition process serve as the seeds from which the global recognition process is initiated. Each seed is swept along the trajectory where the best-fit is found. A smooth sweep is controlled by a set of adaptive constraints computed dynamically from an on-line sweeping history. We apply the proposed method to real world data from different application domains. Experimental results are presented and discussed.!22
机译:摘要:生物物体被拉长。这项研究解决了从2D强度图像和3D体积中识别细长物体的问题。针对此类对象开发了一种称为管模型的数学模型,并在识别的两个阶段得到有效利用。定量利用几何表面特征与对象模型参数之间的显式关系来自动定位要识别的种子。不变的表面特征用于约束或假设感兴趣的对象。通过将基于假设动态生成的匹配过滤器与传感器数据相关联,可以对假设进行验证。在这种局部识别过程中识别出的试管充当启动全局识别过程的种子。每个种子沿着找到最佳拟合的轨迹扫过。平滑扫描由一组自适应约束控制,这些约束是根据在线扫描历史动态计算的。我们将建议的方法应用于来自不同应用程序域的现实世界数据。提出并讨论了实验结果!22

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号