首页> 外文会议>Mathematical Foundations of Computer Science 2008 >Computing Sharp 2-Factors in Claw-Free Graphs
【24h】

Computing Sharp 2-Factors in Claw-Free Graphs

机译:在无爪图中计算夏普2因子

获取原文
获取原文并翻译 | 示例

摘要

In a recently submitted paper we obtained an upper bound for the minimum number of components of a 2-factor in a claw-free graph. This bound is sharp in the sense that there exist infinitely many claw-free graphs for which the bound is tight. In this paper we extend these results by presenting a polynomial algorithm that constructs a 2-factor of a claw-free graph with minimum degree at least four whose number of components meets this bound. As a byproduct we show that the problem of obtaining a minimum 2-factor (if it exists) is polynomi-ally solvable for a subclass of claw-free graphs. As another byproduct we give a short constructive proof for a result of Ryjacek, Saito & Schelp.
机译:在最近提交的论文中,我们获得了无爪图中2因子的最小数量上限。在存在无限多个无爪图的严格意义上,此边界是尖锐的。在本文中,我们通过提出一种多项式算法扩展了这些结果,该算法构造了一个无爪图的2因子,该图的最小度至少为4,且其分量数满足此限制。作为副产品,我们表明对于无爪图的子类,获得最小二因子(如果存在)的问题在多项式上可解决。作为另一个副产品,我们对Ryjacek,Saito和Schelp的结果给出了简短的建设性证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号