首页> 外文会议>Machine learning >Automatic Segmentation of Continuous Trajectories with Invariance to Nonlinear Warpings of Time
【24h】

Automatic Segmentation of Continuous Trajectories with Invariance to Nonlinear Warpings of Time

机译:对非线性时间扭曲不变的连续轨迹自动分割

获取原文
获取原文并翻译 | 示例

摘要

We study the classification problem that arises when two variables-one continuous (x), one discrete (s)-evolve jointly in time. We suppose that the vector x traces out a smooth multidimensional curve, to each point of which the variable s attaches a discrete label. The trace of s thus partitions the curve into different segments whose boundaries occur where s changes value. We consider how to learn the mapping between x and s from examples of segmented curves. Our approach is to model the conditional random process that generates segments of constant s along the curve of x. We suppose that the variable s evolves stochastically as a function of the arc length traversed by x. Since arc length does not depend on the rate at which a curve is traversed, this gives rise to a family of Markov processes whose predictions, Pr[s|x], are invariant to nonlinear warpings (or reparameterizations) of time. We show how to learn the parameters of these Markov processes from labeled and/or unla-beled examples of segmented curves. The resulting models are motivated for automatic speech recognition, where x are acoustic features and s are phonetic transcriptions.
机译:我们研究了当两个变量(一个连续(x),一个离散(s))随时间共同演化时出现的分类问题。我们假设向量x绘制出平滑的多维曲线,变量s的每个点都附有离散标签。因此,s的迹线将曲线划分为不同的段,其边界出现在s更改值的位置。我们考虑如何从分段曲线的示例中学习x和s之间的映射。我们的方法是对条件随机过程建模,该条件随机过程沿x曲线生成常数为s的段。我们假设变量s随x横移的弧长随机变化。由于弧长不取决于曲线的移动速度,因此产生了一系列Markov过程,其预测Pr [s | x]对于时间的非线性翘曲(或重新参数化)是不变的。我们展示了如何从分段曲线的带标签和/或无带标签的示例中学习这些马尔可夫过程的参数。结果模型激励自动语音识别,其中x是声学特征,s是语音转录。

著录项

  • 来源
    《Machine learning》|1998年|506-514|共9页
  • 会议地点 Madison WI(US);Madison WI(US)
  • 作者

    Lawrence K. Saul;

  • 作者单位

    ATT Labs - Research 180 Park Ave, E-171 Florham Park, NJ 07932;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算机的应用;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号