首页> 外文会议>Machine Learning for Signal Processing, 2009. MLSP 2009 >Multi-class classifiers based on binary classifiers: Performance, efficiency, and minimum coding matrix distances
【24h】

Multi-class classifiers based on binary classifiers: Performance, efficiency, and minimum coding matrix distances

机译:基于二进制分类器的多分类器:性能,效率和最小编码矩阵距离

获取原文

摘要

Using multiple binary classifiers is a popular way to construct multi-class classifiers. There exist several strategies to construct multi-class classifiers from binary classifiers. An important question is which strategy offers the highest probability of successful classification given the number of N binary classifiers used. The first result presented in this work is a method to approximate how many classes can be distinguished using N binary classifiers in practical systems rather than theoretical setups. We come to the conclusion that in this formulation, all methods share the same performance limit, which is determined using the first result. The next question is what the smallest number of binary classifiers is that is needed to attain a given probability of success. To investigate this, we introduce the concept of efficiency, which is the ratio between the number bits needed to count the number of distinguishable classes and the number of bits used. The last contribution concerns the conclusion that methods should exist that are more efficient than those currently employed.
机译:使用多个二进制分类器是一种构造多分类器的流行方法。存在几种从二进制分类器构造多分类器的策略。一个重要的问题是,在使用N个二进制分类器的情况下,哪种策略提供成功分类的可能性最高。在这项工作中提出的第一个结果是一种方法,该方法可以估算在实际系统中而不是理论设置中使用N个二进制分类器可以区分多少个类。我们得出的结论是,在此公式中,所有方法都具有相同的性能极限,这是使用第一个结果确定的。下一个问题是达到给定成功概率所需的最小数量的二进制分类器。为了对此进行研究,我们引入了效率的概念,即对可区分类的数量进行计数所需的位数与所使用的位数之间的比率。最后一个贡献涉及这样的结论,即应该存在比当前采用的方法更有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号