首页> 外文会议>Machine Learning for Signal Processing, 2009. MLSP 2009 >Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI
【24h】

Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI

机译:复值fMRI数据去噪的质量图阈值及其在fMRI ICA中的应用

获取原文

摘要

Although functional magnetic resonance imaging (fMRI) data are acquired as complex-valued images, traditionally most fMRI studies only use the magnitude of the data. FMRI analysis in the complex domain promises to provide more statistically significant information; however, the noisy nature of the phase poses a challenge for successful study of fMRI by complex-valued signal processing algorithms. In this paper, we introduce a physiologically motivated de-noising method that uses phase quality maps and demonstrate its effectiveness in successfully identifying and eliminating noisy areas in the fMRI data. Additionally, we show how the developed de-noising method improves the results of complex-valued independent component analysis of fMRI data, a very successful tool for blind source separation of biomedical data.
机译:尽管功能磁共振成像(fMRI)数据是作为复数值图像获取的,但是传统上大多数fMRI研究仅使用数据的大小。复杂领域的FMRI分析有望提供更多具有统计意义的信息;然而,该阶段的噪声性质对通过复值​​信号处理算法成功研究fMRI构成了挑战。在本文中,我们介绍了一种使用相质量图的生理动机降噪方法,并证明了其在成功识别和消除fMRI数据中的噪点区域方面的有效性。此外,我们展示了开发的降噪方法如何改善fMRI数据的复值独立分量分析的结果,fMRI数据是一种非常成功的生物医学数据盲源分离工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号