首页> 外文会议>Machine learning for multimodal interaction >Robust Heteroscedastic Linear Discriminant Analysis and LCRC Posterior Features in Meeting Data Recognition
【24h】

Robust Heteroscedastic Linear Discriminant Analysis and LCRC Posterior Features in Meeting Data Recognition

机译:会议数据识别中的鲁棒异方差线性判别分析和LCRC后验特征

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates into feature extraction for meeting recognition. Three robust variants of popular HLDA transform are investigated. Influence of adding posterior features to PLP feature stream is studied. The experimental results are obtained on two data-sets: CTS (continuous telephone speech) and meeting data from NIST RT'05 evaluations. Silence-reduced HLDA and LCRC phoneme-state posterior features are found to be suitable for both recognition tasks.
机译:本文研究了用于会议识别的特征提取。研究了流行的HLDA变换的三种鲁棒变体。研究了增加后验特征对PLP特征流的影响。从两个数据集获得了实验结果:CTS(连续电话语音)和来自NIST RT'05评估的会议数据。发现沉默降低的HLDA和LCRC音素状态的后验特征适合于两种识别任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号