首页> 外文会议>Machine learning and data mining in pattern recognition >A Linear Classification Method in a Very High Dimensional Space Using Distributed Representation
【24h】

A Linear Classification Method in a Very High Dimensional Space Using Distributed Representation

机译:使用分布表示的超高维空间线性分类方法

获取原文
获取原文并翻译 | 示例

摘要

We have proposed a fast learning and classification method by using distributed representation of vectors. In this paper, first, we shows that our method provides faster and better performance than 1-NN method by introducing a definition of a similarity concerned with LSH scheme. Next we compare our method with the Naive Bayes with respect to the number of dimensions of features. While the Naive Bayes requires a considerably large dimensional feature space, our method achieves higher performance even where the number of dimensions of a feature space of our method is much smaller than that of Naive Bayes. We explain our method by formalizing as a linear classifier in a very high dimensional space and show it is a special case of Naive Bayes model. Experimental results show that our method provides superior classification rates with small time complexity of learning and classification and is applicable to large data set.
机译:我们提出了一种使用向量的分布式表示的快速学习和分类方法。在本文中,首先,我们通过引入与LSH方案有关的相似性定义,证明了我们的方法比1-NN方法具有更快,更好的性能。接下来,就特征尺寸的数量而言,将我们的方法与朴素贝叶斯进行比较。尽管朴素贝叶斯需要相当大的维度特征空间,但是即使我们方法的特征空间的维数比朴素贝叶斯的特征空间小得多,我们的方法仍可以实现更高的性能。我们通过形式化为非常高维空间中的线性分类器来说明我们的方法,并证明这是朴素贝叶斯模型的特例。实验结果表明,该方法具有较高的分类率,学习和分类的时间复杂度较小,适用于大数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号