首页> 外文会议>Machine Learning and Applications, 2009. ICMLA '09 >Application of Machine Learning Techniques for Prediction of Radiation Pneumonitis in Lung Cancer Patients
【24h】

Application of Machine Learning Techniques for Prediction of Radiation Pneumonitis in Lung Cancer Patients

机译:机器学习技术在肺癌患者放射性肺炎预测中的应用

获取原文

摘要

Lung cancer patients who receive radiotherapy as part of their treatment are at risk radiation-induced lung injury known as radiation pneumonitis (RP). RP is a potentially fatal side effect to treatment. Hence, new methods are needed to guide physicians to prescribe targeted therapy dosage to patients at high risk of RP. Several predictive models based on traditional statistical methods and machine learning techniques have been reported, however, no guidance to variation in performance has not been provided to date. Therefore, in this study, we compare several widely used classification algorithms in the machine learning field are used to distinguish between different risk groups of RP. The performance of these classification algorithms is evaluated in conjunction with several feature selection strategy and the impact of the feature selection on performance is further evaluated.
机译:接受放射治疗作为其治疗一部分的肺癌患者处于放射线诱发的肺损伤风险中,称为放射性肺炎(RP)。 RP是治疗的潜在致命副作用。因此,需要新的方法来指导医生为高风险的RP患者开具针对性的治疗剂量。已经报道了几种基于传统统计方法和机器学习技术的预测模型,但是,迄今为止,尚未提供有关性能变化的指南。因此,在这项研究中,我们比较了机器学习领域中几种广泛使用的分类算法,用于区分RP的不同风险组。结合几种特征选择策略评估了这些分类算法的性能,并进一步评估了特征选择对性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号