首页> 外文会议>Machine Learning and Applications, 2009. ICMLA '09 >A Hybrid Method of Genetic Algorithms and Ant Colony Optimization to Solve the Traveling Salesman Problem
【24h】

A Hybrid Method of Genetic Algorithms and Ant Colony Optimization to Solve the Traveling Salesman Problem

机译:遗传算法与蚁群优化的混合方法求解旅行商问题

获取原文

摘要

A new hybrid method iterative Extended Changing Crossover Operators which can efficiently obtain the optimum solution of the Traveling Salesman Problem through flexibly alternating Ant Colony Optimization (ACO) which simulates process of learning swarm intelligence in antsȁ9; feeding behavior and Edge Assembly Crossover (EAX) which has been recently noticed as an available method for efficient selection of optimum solution with preserving diversity of chromosomes at any time, is studied. It automatically controls the generation on which it exchanges ACO for EAX by observing diversity and convergence of chromosomes generated by ACO with both lengths and their variance. It uses ACO in early stage of generations to create variable local optimum solutions and it uses EAX in later stage of generations efficiently to generate global optimum solutions using chromosomes generated by ACO. If it cannot find the optimum solution in this trial it makes ACO regenerate new chromosomes to merge with the last best solution searched through EAX in order to maintain diversity of chromosomes, before it makes EAX reproduce better solutions with the merged chromosomes. This trial is repeatedly executed until EAX can find the best solution. In this paper its validity is experimentally verified by using medium-sized TSP data.
机译:一种新的混合方法迭代扩展变分交叉算子,它可以通过灵活交替的蚁群优化(ACO)模拟蚂蚁ȁ9的群体智能学习过程,有效地获得旅行商问题的最优解;进食行为和边缘装配交叉(EAX),最近被发现它是一种有效选择最佳解决方案并随时保留染色体多样性的有效方法。它通过观察ACO生成的染色体的长度和方差,自动控制将ACO交换为EAX的生成。它在世代早期使用ACO创建可变的局部最优解,并在世代后期使用EAX有效地使用ACO生成的染色体生成全局最优解。如果无法在该试验中找到最佳解决方案,则可以使ACO重新生成新的染色体以与通过EAX搜索的最后一个最佳解决方案合并,以保持染色体的多样性,然后再使EAX使用合并的染色体重现更好的解决方案。反复执行该试验,直到EAX找到最佳解决方案为止。本文使用中型TSP数据通过实验验证了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号