【24h】

Cantor's Paradise Regained:Constructive Mathematics from Brouwer to Kolmogorov to Gelfond

机译:康托尔的天堂复活:从布劳威尔(Brouwer)到科莫格罗夫(Kolmogorov)到盖尔方(Gelfond)的建设性数学

获取原文
获取原文并翻译 | 示例

摘要

Constructive mathematics, mathematics in which the existence of an object means that that we can actually construct this object, started as a heavily restricted version of mathematics, a version in which many commonly used mathematical techniques (like the Law of Excluded Middle) were forbidden to maintain constructivity. Eventually, it turned out that not only constructive mathematics is not a weakened version of the classical one - as it was originally perceived - but that, vice versa, classical mathematics can be viewed as a particular (thus, weaker) case of the constructive one. Crucial results in this direction were obtained by M. Gelfond in the 1970s. In this paper, we mention the history of these results, and show how these results affected constructive mathematics, how they led to new algorithms, and how they affected the current activity in logic programming-related research.
机译:构造数学,即其中存在一个对象意味着我们实际上可以构造该对象的数学,是从数学的严格限制版本开始的,该版本禁止许多常用的数学技巧(例如“排除中间定律”)保持建设性。最终,事实证明,不仅构造数学不是古典数学的弱化版本(最初认为的那样),而且反之亦然,古典数学可以看作是构造数学的一种特殊情况(因此,较弱)。 。 M. Gelfond在1970年代获得了这一方向的重要成果。在本文中,我们提到了这些结果的历史,并说明了这些结果如何影响构造数学,它们如何导致新算法以及它们如何影响逻辑编程相关研究中的当前活动。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号