首页> 外文会议>Logic for programming, artificial intelligence, and reasoning >A Quasipolynomial Cut-Elimination Procedure in Deep Inference via Atomic Flows and Threshold Formulae
【24h】

A Quasipolynomial Cut-Elimination Procedure in Deep Inference via Atomic Flows and Threshold Formulae

机译:通过原子流和阈值公式进行深度推断的拟多项式削减法

获取原文
获取原文并翻译 | 示例

摘要

Jerabek showed in 2008 that cuts in propositional-logic deep-inference proofs can be eliminated in quasipolynomial time. The proof is an indirect one relying on a result of Atserias, Galesi and Pudlak about monotone sequent calculus and a correspondence between this system and cut-free deep-inference proofs. In this paper we give a direct proof of Jefabek's result: we give a quasipolynomial-time cut-elimination procedure in propositional-logic deep inference. The main new ingredient is the use of a computational trace of deep-inference proofs called atomic flows, which are both very simple (they trace only structural rules and forget logical rules) and strong enough to faithfully represent the cut-elimination procedure.
机译:Jerabek在2008年证明,可以在准多项式时间内消除命题逻辑深层推理证明的削减。该证明是一个间接的证明,它依赖于Atserias,Galesi和Pudlak关于单调相继演算的结果以及该系统与无割深推论证明之间的对应关系。在本文中,我们给出了Jefabek结果的直接证明:我们在命题逻辑深层推论中给出了一个拟多项式的时间消除过程。主要的新成分是使用称为原子流的深度推理证明的计算轨迹,它们既非常简单(它们仅跟踪结构规则,却忘记了逻辑规则),并且足够强大,足以忠实地代表切割消除过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号