首页> 外文会议>Light-emitting diodes: Materials, devices, and applications for solid state lighting XXI >Elimination of resistive losses in large-area LEDs by new diffusion-driven devices
【24h】

Elimination of resistive losses in large-area LEDs by new diffusion-driven devices

机译:新型扩散驱动器件消除了大面积LED中的电阻损耗

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

High-power operation of conventional GaN-based light-emitting diodes (LEDs) is severely limited by current crowding, which increases the bias voltage of the LED, concentrates light emission close to the p-type contact edge, and aggravates the efficiency droop. Fabricating LEDs on thick n-GaN substrates alleviates current crowding but requires the use of expensive bulk GaN substrates and fairly large n-contacts, which take away a large part of the active region (AR). In this work, we demonstrate through comparative simulations how the recently introduced diffusion-driven charge transport (DDCT) concept can be used to realize lateral heterojunction (LHJ) structures, which eliminate most of the lateral current crowding. Specifically in this work, we analyze how using a single-side graded AR can both facilitate electron and hole diffusion in DDCT and increase the effective AR thickness. Our simulations show that the increased effective AR thickness allows a substantial reduction in the efficiency droop at large currents, and that unlike conventional 2D LEDs, the LHJ structure shows practically no added efficiency loss or differential resistance due to current crowding. Furthermore, as both electrons and holes enter the AR from the same side without any notable potential barriers in the LHJ structure, the LHJ structure shows an additional wall-plug efficiency gain over the conventional structures under comparison. This injection from the same side is expected to be even more interesting in multiple quantum well structures, where carriers typically need to surpass several potential barriers in conventional LEDs before recombining. In addition to simulations, we also demonstrate selective-area growth of a finger structure suitable for operation as an LHJ device with 2μm distance between n- and p-GaN regions.
机译:电流拥挤严重限制了常规GaN基发光二极管(LED)的大功率工作,这增加了LED的偏置电压,使光发射集中在p型接触边缘附近,并加剧了效率下降。在厚的n-GaN衬底上制造LED可以减轻电流拥挤,但需要使用昂贵的块状GaN衬底和相当大的n触点,这会占用有源区(AR)的很大一部分。在这项工作中,我们通过比较仿真演示了最近引入的扩散驱动电荷传输(DDCT)概念如何可用于实现横向异质结(LHJ)结构,从而消除了大多数横向电流拥挤的情况。特别是在这项工作中,我们分析了如何使用单面渐变AR来促进DDCT中的电子和空穴扩散并增加有效AR厚度。我们的仿真表明,增加的有效AR厚度可以大幅度降低大电流时的效率下降,并且与传统的2D LED不同,LHJ结构实际上没有因电流拥挤而增加效率损失或差分电阻。此外,由于电子和空穴都从同一侧进入AR,而LHJ结构中没有任何明显的势垒,因此LHJ结构相对于传统结构显示出了额外的壁塞效率增益。在多量子阱结构中,从同一侧进行的注入预计会更加有趣,在这种结构中,载流子通常需要在重组之前超过常规LED中的几个势垒。除了模拟之外,我们还演示了适合作为LHJ器件操作的指状结构的选择性区域生长,n-和p-GaN区之间的距离为2μm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号