首页> 外文会议>Learning and intelligent optimization >Systematic Improvement of Monte-Carlo Tree Search with Self-generated Neural-Networks Controllers
【24h】

Systematic Improvement of Monte-Carlo Tree Search with Self-generated Neural-Networks Controllers

机译:自生成神经网络控制器对蒙特卡洛树搜索的系统改进

获取原文
获取原文并翻译 | 示例

摘要

In UCT algorithm, a large number of Monte-Carlo simulations are performed and their rewards are averaged to evaluate a specified action. In this paper, we propose a general approach to enhance the UCT algorithm with knowledge-based neural controllers by adjusting the probability distribution of UCT simulations. Experimental results on Dead End, the classical predator/prey game, show that our approach improves the performance of UCT significantly.
机译:在UCT算法中,执行了大量的蒙特卡洛模拟,并将它们的收益平均以评估指定的动作。在本文中,我们提出了一种通用方法,通过调整UCT仿真的概率分布,用基于知识的神经控制器来增强UCT算法。在经典的捕食/被捕食游戏Dead End上的实验结果表明,我们的方法大大提高了UCT的性能。

著录项

  • 来源
  • 会议地点 Venice(IT);Venice(IT)
  • 作者单位

    Jiu-Ding Computer GO Research Institute, School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China;

    Jiu-Ding Computer GO Research Institute, School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China;

    Jiu-Ding Computer GO Research Institute, School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China;

    Jiu-Ding Computer GO Research Institute, School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China;

    Jiu-Ding Computer GO Research Institute, School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算机网络;
  • 关键词

    machine learning; planning; monte-carlo simulations; neural networks;

    机译:机器学习规划;蒙特卡罗模拟;神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号