首页> 外文会议>Learning and intelligent optimization >Study of the Influence of the Local Search Method in Memetic Algorithms for Large Scale Continuous Optimization Problems
【24h】

Study of the Influence of the Local Search Method in Memetic Algorithms for Large Scale Continuous Optimization Problems

机译:局部搜索方法在大规模连续优化问题的模因算法中的影响研究

获取原文
获取原文并翻译 | 示例

摘要

Memetic algorithms arise as very effective algorithms to obtain reliable and high accurate solutions for complex continuous optimization problems. Nowadays, high-dimensional optimization problems are an interesting field of research. Its high dimension introduces new problems for the optimization process, making recommendable to test the behavior of optimization algorithms to large-scale problems. In memetic algorithms, the local search method is responsible of exploring the neighborhood of the current solutions; therefore, the dimensionality has a direct influence over this component. The aim of this paper is to study this influence. We design different memetic algorithms that only differ in the local search method applied, and they are compared using two sets of continuous benchmark functions: a standard one and a specific set with large-scale problems. The results show that high dimensionality reduces the differences among the different local search methods.
机译:模因算法是一种非常有效的算法,可为复杂的连续优化问题获取可靠且高精度的解决方案。如今,高维优化问题是一个有趣的研究领域。它的高维度为优化过程引入了新问题,因此值得推荐的是测试针对大规模问题的优化算法的行为。在模因算法中,局部搜索方法负责探索当前解的邻域。因此,尺寸直接影响该组件。本文的目的是研究这种影响。我们设计了不同的模因算法,仅在所应用的本地搜索方法上有所不同,并且使用两组连续的基准函数对它们进行比较:标准函数和特定组存在较大问题。结果表明,高维数减少了不同局部搜索方法之间的差异。

著录项

  • 来源
    《Learning and intelligent optimization》|2009年|P.221-234|共14页
  • 会议地点 Trento(IT);Trento(IT)
  • 作者单位

    Department of Computer Languages and Systems, Universidad de Cadiz, Cadiz, Spain;

    Department of Computer Science and Artificial Inteligence, Universidad de Granada, Granada, Spain;

    Department of Computer Science and Artificial Inteligence, Universidad de Granada, Granada, Spain;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算机网络;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号