首页> 外文会议>Latest trends on applied mathematics, simulation, modelling >Robust Multicollinearity Diagnostic Measure in Collinear Data set
【24h】

Robust Multicollinearity Diagnostic Measure in Collinear Data set

机译:共线数据集中的鲁棒多重共线性诊断措施

获取原文
获取原文并翻译 | 示例

摘要

It is now evident that high leverage points or outliers in the X-direction may affect the collinearity pattern of a data set. Their presence may decrease or increase multicollinearity problem of a collinear data matrix X. The usage of Classical Variance Inflation Factor (CVIF) for multicollinearity diagnostics is not reliable as it is not resistant to the presence of high leverage points. In this paper, we proposed a robust Variance Inflation Factors (RVIF) which is based on the GM(DRGP) estimator. We denote this estimator as RVIF(GM(DRGP)). The empirical evidences indicate that the CVIF performs poorly in the presence of high leverage points. Nonetheless, the RVIF (GM (DRGP)) successfully detect the collinearity pattern when high leverage points are present in the collinear data.
机译:现在很明显,X方向上的高杠杆点或离群值可能会影响数据集的共线性模式。它们的存在可能会减少或增加共线性数据矩阵X的多重共线性问题。使用古典方差膨胀因子(CVIF)进行多重共线性诊断是不可靠的,因为它无法抵抗高杠杆点的存在。在本文中,我们提出了一个基于GM(DRGP)估计量的鲁棒方差通胀因子(RVIF)。我们将这个估计量表示为RVIF(GM(DRGP))。经验证据表明,在高杠杆点的情况下,CVIF的表现不佳。但是,当共线性数据中存在高杠杆点时,RVIF(GM(DRGP))成功检测到共线性模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号