首页> 外文会议>Latent variable analysis and signal separation. >On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach
【24h】

On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach

机译:揭示多路数据中的复制结构:一种新颖的张量分解方法

获取原文
获取原文并翻译 | 示例

摘要

A novel tensor decomposition is proposed to make it possible to identify replicating structures in complex data, such as textures and patterns in music spectrograms. In order to establish a computational framework for this paradigm, we adopt a multiway (tensor) approach. To this end, a novel tensor product is introduced, and the subsequent analysis of its properties shows a perfect match to the task of identification of recurrent structures present in the data. Out of a whole class of possible algorithms, we illuminate those derived so as to cater for orthogonal and nonnegative patterns. Simulations on texture images and a complex music sequence confirm the benefits of the proposed model and of the associated learning algorithms.
机译:提出了一种新颖的张量分解,以使其能够识别复杂数据中的复制结构,例如音乐声谱图中的纹理和图案。为了建立这种范例的计算框架,我们采用了一种多路(张量)方法。为此,引入了一种新的张量积,随后对其性质的分析表明与识别数据中存在的递归结构的任务非常匹配。在所有可能的算法中,我们阐明了那些导出的算法,以适应正交和非负模式。对纹理图像和复杂音乐序列的仿真证实了所提模型和相关学习算法的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号