首页> 外文会议>Knowledge-Based Intelligent Information and Engineering Systems pt.2; Lecture Notes in Artificial Intelligence; 4252 >Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion
【24h】

Two-Phase Identification Algorithm Based on Fuzzy Set and Voting for Intelligent Multi-sensor Data Fusion

机译:基于模糊集和投票的两相智能多传感器数据融合识别算法

获取原文
获取原文并翻译 | 示例

摘要

Multi-sensor data fusion techniques combine data from multiple sensors in order to get more accurate and efficient meaningful information through several intelligent process levels that may not be possible from a single sensor alone. One of the most important parts in the intelligent data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models. In this paper, we present a novel identification fusion method by integrating two fusion approaches such as the parametric classification techniques and the cognitive-based models for achieving high intelligent decision support. We also have confirmed that the reliability and performance of two-phase identification algorithm never fall behind other fusion methods. We thus argue that our heuristics are required for effective decision making in real time for intelligent military situation assessment.
机译:多传感器数据融合技术将来自多个传感器的数据组合在一起,以便通过多个智能过程级别获得更准确和有效的有意义的信息,而这可能仅靠单个传感器是不可能的。智能数据融合系统中最重要的部分之一就是识别融合,它可以分为物理模型,参数分类和基于认知的模型。在本文中,我们通过集成两种融合方法(如参数分类技术和基于认知的模型)来提出一种新颖的识别融合方法,以实现高度智能的决策支持。我们还证实,两相识别算法的可靠性和性能永远不会落后于其他融合方法。因此,我们认为我们的启发式方法是实时进行有效决策以进行智能军事形势评估所必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号