首页> 外文会议>Third International Workshop on Pattern Recognition >A Similarity Learning for Fine-grained Images based on the Mahalanobis Metric and the Kernel Method
【24h】

A Similarity Learning for Fine-grained Images based on the Mahalanobis Metric and the Kernel Method

机译:基于Mahalanobis度量和核方法的细粒度图像相似性学习

获取原文
获取原文并翻译 | 示例

摘要

Since most prior studies on similar image retrieval focused on the category level, image similarity learning at the fine-grained level remains challenge, which often leads to a semantic gap between the low-level visual features and high-level human perception. To solve the problem, we proposed a Mahalanobis and kernel-based similarity (Mah-Ker) method combined with features developed by the Convolutional Neural Network (CNN). Firstly, triplet constraints are introduced to characterize the fine-grained image similarity relationship which the Mahalanobis metric is trained upon. Then a kernel-based metric is proposed in the last layer of model to devise nonlinear extensions of Mahalanobis metric and further enhance the performance. Experiments based on the real VIP.com dress dataset showed that our proposed method achieved a promising higher retrieval performance than both the state-of-art fine-grained similarity model and the hand-crafted visual feature based approaches.
机译:由于大多数有关相似图像检索的先前研究都集中在类别级别,因此在细粒度级别上进行图像相似性学习仍然是一个挑战,这通常会导致低级视觉特征和高级人类感知之间的语义鸿沟。为了解决该问题,我们结合卷积神经网络(CNN)开发的特征,提出了一种基于Mahalanobis和基于核的相似度(Mah-Ker)方法。首先,引入三重态约束来表征训练Mahalanobis度量的细粒度图像相似关系。然后在模型的最后一层中提出了基于核的度量,以设计Mahalanobis度量的非线性扩展并进一步提高性能。基于真实VIP.com服装数据集的实验表明,我们提出的方法比最先进的细粒度相似性模型和基于手工视觉特征的方法都具有更高的检索性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号