【24h】

An Exact Algorithm for the Minimum Dominating Clique Problem

机译:最小支配集团问题的精确算法

获取原文
获取原文并翻译 | 示例

摘要

A subset of vertices D is contained in V of a graph G = (V, E) is a dominating clique if D is a dominating set and a clique of G. The existence problem 'Given a graph G, is there a dominating clique in G?' is NP-complete, and thus both the Minimum and the Maximum Dominating Clique problem are NP-hard. We present an O(1.3390~n) time algorithm that for an input graph on n vertices either computes a minimum dominating clique or reports that the graph has no dominating clique. The algorithm uses the Branch & Reduce paradigm and its time analysis is based on the Measure & Conquer approach. We also establish a lower bound of Ω(1.2599~n) for the worst case running time of our algorithm.
机译:图D的V中包含顶点D的子集G =(V,E)是一个主导集团,如果D是一个主导集合和一个集团G。存在问题'给定一个图G,是否存在一个主导集团? G?'是NP完全的,因此最小和最大支配集团问题都是NP困难的。我们提出一种O(1.3390〜n)时间算法,该算法针对n个顶点上的输入图计算最小支配集团或报告该图没有支配集团。该算法使用Branch&Reduce范式,其时间分析基于Measure&Conquer方法。对于算法最坏的运行时间,我们还确定了下限Ω(1.2599〜n)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号