首页> 外文会议>International Workshop on Parameterized and Exact Computation(IWPEC 2006); 20060913-15; Zurich(CH) >Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual
【24h】

Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual

机译:全度生成树及其对偶的固定参数可牵引性结果

获取原文
获取原文并翻译 | 示例

摘要

We provide first-time fixed-parameter tractability results for the NP-complete problems MAXIMUM FULL-DEGREE SPANNING TREE and MINIMUM-VERTEX FEEDBACK EDGE SET. These problems are dual to each other: In MAXIMUM FULL-DEGREE SPANNING TREE, the task is to find a spanning tree for a given graph that maximizes the number of vertices that preserve their degree. For MINIMUM-VERTEX FEEDBACK EDGE SET the task is to minimize the number of vertices that end up with a reduced degree. Parameterized by the solution size, we exhibit that MINIMUM-VERTEX FEEDBACK EDGE SET is fixed-parameter tractable and has a problem kernel with the number of vertices linearly depending on the parameter k. Our main contribution for MAXIMUM FULL-DEGREE SPANNING TREE, which is W-hard, is a linear-size problem kernel when restricted to planar graphs. Moreover, we present subexponential-time algorithms in the case of planar graphs.
机译:我们为NP完全问题最大全度扩展树和最小顶点反馈边集提供了首次固定参数可扩展性结果。这些问题互为双重:在最大全度扩展树中,任务是为给定图找到生成树,以最大程度地保留保留其度数的顶点数量。对于MINIMUM-VERTEX FEEDBACK EDGE SET,任务是最小化以减少的度数结尾的顶点数。通过解大小参数化,我们证明MINIMUM-VERTEX反馈边集是固定参数可处理的,并且具有一个问题核,其顶点数线性依赖于参数k。对于W值最大的最大全扩展树,我们的主要贡献是被限制为平面图时的线性大小的问题内核。此外,在平面图的情况下,我们提出了次指数时间算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号