首页> 外文会议>International Workshop on Multiple Classifier Systems(MCS 2005); 20050613-15; Seaside,CA(US) >An Abnormal ECG Beat Detection Approach for Long-Term Monitoring of Heart Patients Based on Hybrid Kernel Machine Ensemble
【24h】

An Abnormal ECG Beat Detection Approach for Long-Term Monitoring of Heart Patients Based on Hybrid Kernel Machine Ensemble

机译:基于混合核机器集成的心脏病患者长期心电图异常检测方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel hybrid kernel machine ensemble is proposed for abnormal ECG beat detection to facilitate long-term monitoring of heart patients. A binary SVM is trained using ECG beats from different patients to adapt to the reference values based on the general patient population. A one-class SV M is trained using only normal ECG beats from a specific patient to adapt to the specific reference value of the patient. Trained using different data sets, these two SVMs usually perform differently in classifying ECG beats of that specific patient. Therefore, integration of the two types of SVMs is expected to perform better than using either of them separately and that improving the generalization. Experimental results using MIT/BIH arrhythmia ECG database show good performance of our proposed ensemble and support its feasibility in practical clinical application.
机译:在本文中,提出了一种新型的混合内核机器集成,用于异常ECG搏动检测,以方便心脏病患者的长期监测。使用来自不同患者的ECG搏动训练二进制SVM,以根据一般患者群体适应参考值。仅使用来自特定患者的正常ECG搏动训练一类SV M,以适应患者的特定参考值。在使用不同的数据集进行训练后,这两个SVM在对特定患者的ECG搏动进行分类时通常表现不同。因此,期望两种类型的SVM的集成要比分别使用它们中的任何一种更好,并且可以提高通用性。使用MIT / BIH心律失常ECG数据库进行的实验结果显示了我们提出的整体的良好性能,并支持其在实际临床应用中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号