首页> 外文会议>International Workshop on Materials Analysis and Processing in Magnetic Fields; 20040317-19; Tallahassee,FL(US) >MAGNETIC ORIENTATION IN BIOLOGY: VIRUS STRUCTURE - BLOOD CLOT ASSEMBLY - CELL GUIDANCE
【24h】

MAGNETIC ORIENTATION IN BIOLOGY: VIRUS STRUCTURE - BLOOD CLOT ASSEMBLY - CELL GUIDANCE

机译:生物学中的磁性方向:病毒结构-血液凝块组装-细胞指导

获取原文
获取原文并翻译 | 示例

摘要

Our childhood games with permanent magnets leave us with the impression that matter, in general, does not respond to a magnetic field. In reality, virtually everything is subjected to minute forces of attraction, repulsion or orientation. Strong fields combined with better understanding allow us to exploit these effects to tackle biological problems. In particular, the very weak diamagnetic anisotropy associated with individual molecules can give rise to high orientation of well organized structures such as crystals, liquid-crystals, semi-rigid polymers and individual cells. High orientation is often accompanied by better data and superior properties. In some circumstances, such as in crystallization, the orientating torque might induce effects over and above simple orientation. Magnetic field orientation has a number of advantages over other orienting techniques. Drawing or spinning produce fibers and can alter structure or cause damage while template methods invariable work only over a short range. The application of an electric field can cause heating and electrophoresis. In contrast, a magnetic field acts at a distance allowing uniform orientation in bulk and the creation of composites with components having different orientations. The contribution that magnetic orientation has made to a range of biological topics is illustrated by briefly describing a number of examples. For example, it has been a boon to x-ray studies of some non-crystalline filamentous complexes (e.g. fibrin, actin, microtubules, bacterial flagella and filamentous viruses) and is being vigorously exploited in NMR. The blood-clot polymer, fibrin, forms highly oriented gels when polymerized in a strong field and a number of its properties have been elucidated as a result. Magnetically oriented scaffolds of collagen, the major connective tissue protein, and fibrin are being used to study cell contact guidance. Oriented biomaterials might eventually be incorporated into specialized wound dressings, for example, to direct nerve repair.
机译:在我们的带有永磁体的童年游戏中,给人的印象是,物质通常不会对磁场做出反应。实际上,几乎所有事物都受到微小的吸引力,排斥力或定向力的作用。强大的领域加上更好的理解使我们能够利用这些效应来解决生物学问题。特别是,与单个分子相关的非常弱的抗磁性各向异性会导致组织良好的结构(如晶体,液晶,半刚性聚合物和单个单元)的高取向。高定向性通常伴随着更好的数据和优越的性能。在某些情况下,例如在结晶过程中,定向扭矩可能会导致超出简单定向的影响。与其他定向技术相比,磁场定向具有许多优势。拉伸或纺丝会产生纤维,并可能改变结构或造成损坏,而模板方法始终只能在很短的范围内起作用。施加电场会引起加热和电泳。相反,磁场以一定距离作用,该距离允许整体上均匀地取向并且产生具有不同取向的组分的复合材料。简要介绍了许多示例,说明了磁取向对一系列生物学主题的贡献。例如,对某些非晶态丝状复合物(例如纤维蛋白,肌动蛋白,微管,细菌鞭毛和丝状病毒)进行X射线研究是一项福音,并且正在NMR中得到大力开发。当在强磁场中聚合时,血凝蛋白纤维蛋白会形成高度定向的凝胶,因此已阐明了其许多特性。胶原蛋白,主要的结缔组织蛋白和纤维蛋白的磁性定向支架被用于研究细胞接触指导。定向的生物材料最终可能会掺入专门的伤口敷料中,例如以指导神经修复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号