首页> 外文会议>International Workshop on Data-Intensive Scalable Computing Systems >Mapping of RAID Controller Performance Data to the Job History on Large Computing Systems
【24h】

Mapping of RAID Controller Performance Data to the Job History on Large Computing Systems

机译:将RAID控制器性能数据映射到大型计算系统上的作业历史记录

获取原文
获取原文并翻译 | 示例

摘要

For systems executing a mixture of different data intensive applications in parallel there is always the question about the impact that each application has on the storage subsystem. From the perspective of storage, I/O is typically anonymous as it does not contain user identifiers or similar information. This paper focuses on the analysis of performance data collected on shared system components like global file systems that can not be mapped back to user activities immediately. Our approach classifies user jobs based on their properties into classes and correlates these classes with global timelines. Within the paper we will show details of the clustering algorithm, depict our measurement environment and present first results. The results are valuable for tuning HPC storage system to achieve an optimized behavior on a global system level or to separate users into classes with different I/O demands.
机译:对于并行执行不同数据密集型应用程序混合的系统,始终存在有关每个应用程序对存储子系统的影响的问题。从存储的角度来看,I / O通常是匿名的,因为它不包含用户标识符或类似信息。本文着重分析在共享系统组件(例如全局文件系统)上收集的性能数据,这些数据无法立即映射回用户活动。我们的方法根据用户作业的属性将其分类为类,并将这些类与全局时间线相关联。在本文中,我们将展示聚类算法的细节,描述我们的测量环境,并提供第一个结果。这些结果对于调整HPC存储系统以在全局系统级别上实现优化的行为或将用户分为具有不同I / O需求的类非常有价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号