首页> 外文期刊>Future generation computer systems >Energy-efficient mapping of large-scale workflows under deadline constraints in big data computing systems
【24h】

Energy-efficient mapping of large-scale workflows under deadline constraints in big data computing systems

机译:大数据计算系统截止日期约束下的大规模工作流程的节能映射

获取原文
获取原文并翻译 | 示例

摘要

Large-scale workflows for big data analytics have become a main consumer of energy in data centers where moldable parallel computing models such as MapReduce are widely applied to meet high computational demands with time-varying computing resources. The granularity of task partitioning in each moldable job of such big data workflows has a significant impact on energy efficiency, which remains largely unexplored. In this paper, we analyze the properties of moldable jobs and formulate a workflow mapping problem to minimize the dynamic energy consumption of a given workflow request under a deadline constraint in big data systems. Since this problem is strongly NP-hard, we design a fully polynomial-time approximation scheme (FPTAS) for a special case with a pipeline-structured workflow on a homogeneous cluster and a heuristic for the generalized problem with an arbitrary workflow on a heterogeneous cluster. The performance superiority of the proposed solution in terms of dynamic energy saving and deadline missing rate is illustrated by extensive simulation results in comparison with existing algorithms, and further validated by real-life workflow implementation and experimental results in Hadoop/YARN systems.
机译:大数据分析的大规模工作流已成为数据中心中的能量的主要消费者,其中映射等可模制的平行计算模型被广泛应用于满足高计算需求与时变的计算资源。这些大数据工作流程中的每个可模塑工作中的任务分区的粒度对能效产生了重大影响,这仍然很大程度上是未开发的。在本文中,我们分析了模塑作业的性质,并制定了工作流程映射问题,以在大数据系统的截止日期约束下最小化给定工作流请求的动态能耗。由于这个问题很强烈,我们设计了一个完全多项式近似方案(FPTA),用于一个特殊的案例,该特殊情况具有在均匀群集中的管道结构化工作流程,并且在异构群集中具有任意工作流程的通用问题的启发式。 。通过广泛的模拟结果与现有算法相比,通过广泛的模拟来说明了在动态节能和截止日期缺失率方面的性能优势,并通过现有算法进行了广泛的仿真,并通过实际工作流程实现和Hadoop /纱线系统的实验结果进一步验证。

著录项

  • 来源
    《Future generation computer systems》 |2020年第9期|515-530|共16页
  • 作者

    Tong Shu; Chase Q. Wu;

  • 作者单位

    Department of Computer Science New Jersey Institute ofTechnology Newark NJ 07 102 USA;

    Department of Computer Science New Jersey Institute ofTechnology Newark NJ 07 102 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Big data; Workflow mapping; Green computing;

    机译:大数据;工作流程映射;绿色计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号