【24h】

Arithmetic Operators for Pairing-Based Cryptography

机译:基于配对的密码术的算术运算符

获取原文
获取原文并翻译 | 示例

摘要

Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of an ever increasing number of protocols. Software implementations being rather slow, the study of hardware architectures became an active research area. In this paper, we first study an accelerator for the η_T pairing over F_3[x]/(x~(97)+x~(12)+2)). Our architecture is based on a unified arithmetic operator which performs addition, multiplication, and cubing over F_(397). This design methodology allows us to design a compact coprocessor (1888 slices on a Virtex-Ⅱ Pro 4 FPGA) which compares favorably with other solutions described in the open literature. We then describe ways to extend our approach to any characteristic and any extension field.
机译:自从将其引入构造密码学应用以来,(超)椭圆曲线上的配对成为越来越多协议的核心。软件实现相当缓慢,因此硬件体系结构的研究成为活跃的研究领域。在本文中,我们首先研究了F_3 [x] /(x〜(97)+ x〜(12)+2))上η_T配对的加速器。我们的体系结构基于统一的算术运算符,该运算符对F_(397)执行加法,乘法和求和。这种设计方法使我们能够设计一个紧凑的协处理器(在Virtex-ⅡPro 4 FPGA上为1888片),与公开文献中描述的其他解决方案相比具有优势。然后,我们描述将方法扩展到任何特征和任何扩展领域的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号