【24h】

Subspace Sampling and Relative-Error Matrix Approximation: Column-Based Methods

机译:子空间采样和相对误差矩阵逼近:基于列的方法

获取原文
获取原文并翻译 | 示例

摘要

Given an m x n matrix A and an integer k less than the rank of A, the "best" rank k approximation to A that minimizes the error with respect to the Frobenius norm is A_k, which is obtained by projecting A on the top k left singular vectors of A. While A_k is routinely used in data analysis, it is difficult to interpret and understand it in terms of the original data, namely the columns and rows of A. For example, these columns and rows often come from some application domain, whereas the singular vectors are linear combinations of (up to all) the columns or rows of A. We address the problem of obtaining low-rank approximations that are directly interpretable in terms of the original columns or rows of A. Our main results are two polynomial time randomized algorithms that take as input a matrix A and return as output a matrix C, consisting of a "small" (i.e., a low-degree polynomial in k, 1/ε, and log(1/δ)) number of actual columns of A such that ‖A - CC~+A‖_F ≤(1 + ε)‖A - A_k‖_F with probability at least 1 — δ. Our algorithms are simple, and they take time of the order of the time needed to compute the top k right singular vectors of A. In addition, they sample the columns of A via the method of "subspace sampling," so-named since the sampling probabilities depend on the lengths of the rows of the top singular vectors and since they ensure that we capture entirely a certain subspace of interest.
机译:给定一个mxn矩阵A和一个小于A秩的整数k,使A相对于Frobenius范数的误差最小的A的“最佳”秩k近似值为A_k,这是通过将A投影到左奇数个k来获得的A的向量。虽然A_k通常用于数据分析,但很难根据原始数据(即A的列和行)来解释和理解它。例如,这些列和行通常来自某个应用程序域,而奇异向量是A的列或行(最多)的线性组合。我们解决了获得低秩逼近的问题,这些低秩逼近可以直接根据A的原始列或行进行解释。我们的主要结果是两个多项式时间随机算法,将矩阵A作为输入,并将矩阵C作为输出返回,该矩阵C由以下各项的“小”(即,k,1 /ε和log(1 /δ)的低次多项式)组成A的实际列,其中‖A-CC〜+A‖_F≤(1 +ε)‖A-A_k‖_F与p鲁棒性至少为1-δ。我们的算法很简单,花费的时间大约是计算A的前k个右奇异向量所需的时间。此外,它们还通过“子空间采样”方法对A的列进行采样。采样概率取决于顶部奇异矢量的行的长度,并且由于它们可以确保我们完全捕获特定的感兴趣子空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号