【24h】

Nanomechanical Characterization in the FIB

机译:FIB中的纳米力学表征

获取原文
获取原文并翻译 | 示例

摘要

The availability of the Focused Ion Beam (FIB) microscope with its excellent imaging resolution, depth of focus and ion milling capability have made it an appealing platform for materials characterization at the sub-micron, or "nano" level. The FIB has already become popular for the preparation of samples for TEM from bulk samples. Nano-mechanical characterization in the FIB is another extension of the FIB capabilities into the realm of nano-technology. A very important advantage of materials characterization in the FIB is the ability to image and even isolate small structures with the ion beam. In this way, the local mechanical properties of thin films or beams can be directly measured. Extrapolating mechanical properties of small structures from bulk property data is not always appropriate. Also, "edge effect" properties of thin films become more important as the surface to volume ratio increases. The ability to measure the mechanical response of tiny structures can be critical for rapid technology development. For example, in the integrated circuit industry, new materials challenges have been posed by the conversion to copper traces, low dielectric constant insulating layers and Pb-free solders. Rapid integration of these new materials requires accurate finite element modeling of material behavior, which depends on accurate thin film mechanical data of unfamiliar materials.
机译:聚焦离子束(FIB)显微镜具有出色的成像分辨率,聚焦深度和离子铣削能力,这使其成为亚微米或“纳米”级材料表征的理想平台。 FIB已成为从大批量样品制备TEM样品的流行方法。 FIB中的纳米机械特性是FIB功能向纳米技术领域的又一扩展。 FIB中材料表征的一个非常重要的优势是能够用离子束成像甚至隔离小结构。这样,可以直接测量薄膜或梁的局部机械性能。从整体性质数据推断小结构的机械性质并不总是合适的。而且,随着表面体积比的增加,薄膜的“边缘效应”特性变得更加重要。测量微小结构的机械响应的能力对于快速发展技术至关重要。例如,在集成电路产业中,向铜迹线,低介电常数绝缘层和无铅焊料的转换带来了新材料挑战。这些新材料的快速集成要求对材料行为进行精确的有限元建模,这取决于不熟悉材料的精确薄膜机械数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号