【24h】

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs

机译:快速渐进式FPTAS,用于包装带有成本的易碎物品

获取原文
获取原文并翻译 | 示例

摘要

Motivated from recent applications in community TV networks and VLSI circuit design, we study variants of the classic bin packing problem, in which a set of items needs to be packed in a minimum number of unit-sized bins, allowing items to be fragmented. This can potentially reduce the total number of bins used, however, item fragmentation does not come for free. In bin packing with size preserving fragmentation (BP-SPF), there is a bound on the total number of fragmented items. In bin packing with size increasing fragmentation (BP-SIF), fragmenting an item increases the input size (due to a header/footer of fixed size that is added to each fragment). Both BP-SPF and BP-SIF do not belong to the class of problems that admit a polynomial time approximation scheme (PTAS). In this paper, we develop fast asymptotic fully polynomial time approximation schemes (AFPTAS) for both problems. The running times of our schemes are linear in the input size. As special cases, our schemes yield AFPTASs for classical bin packing and for variable-sized bin packing, whose running times improve the best known running times for these problems.
机译:基于社区电视网络和VLSI电路设计的最新应用,我们研究了经典垃圾箱包装问题的变体,其中需要将一组物品包装在最小数量的单位大小的垃圾箱中,以便将物品分成零碎。这可能会减少所使用的垃圾箱总数,但是,零碎物品并非免费提供。在保留大小的碎片的垃圾箱包装(BP-SPF)中,碎片物品的总数受到限制。在大小增加碎片化(BP-SIF)的垃圾箱包装中,对项目进行碎片化会增加输入尺寸(由于将固定大小的页眉/页脚添加到每个碎片中)。 BP-SPF和BP-SIF都不属于允许多项式时间近似方案(PTAS)的问题类别。在本文中,我们针对这两个问题开发了快速渐近完全多项式时间逼近方案(AFPTAS)。我们的方案的运行时间在输入大小上是线性的。作为特殊情况,我们的方案会产生AFPTAS,用于经典箱式装箱和可变尺寸的箱式装箱,其运行时间可缩短针对这些问题的最佳运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号