首页> 外文会议>International Symposium on Distributed Computing and Artificial Intelligence 2008(DCAI 2008) >A Systematic Methodology to Obtain a Fuzzy Model Using an Adaptive Neuro Fuzzy Inference System. Application for Generating a Model for Gas-Furnace Problem
【24h】

A Systematic Methodology to Obtain a Fuzzy Model Using an Adaptive Neuro Fuzzy Inference System. Application for Generating a Model for Gas-Furnace Problem

机译:使用自适应神经模糊推理系统获得模糊模型的系统方法。气炉问题模型生成的应用

获取原文

摘要

In this paper we present a complete design methodology to obtain a fuzzy model with an Adaptive Neuro Fuzzy Inference System (ANFIS). This methodology consists of three phases: In phase I, the automatic selection of input variables and other parameters such as number and type of membership functions is made with a Genetic Algorithm with a special fitness function, obtaining a basic structure of the fuzzy model. The second phase is a massive training of the fuzzy model previously obtained. Finally, the third phase is a post-adjusting of the weights of the rules with a local search algorithm, based on an adjusted fitness function from the first phase. An application of the proposed design method for the gas-furnace time series, a well-known benchmark dataset used by many researchers in the area of neural networks and fuzzy systems is presented, and finally, we present a comparative with other Box-Jenkins models.
机译:在本文中,我们提出了一种完整的设计方法,以利用自适应神经模糊推理系统(ANFIS)获得模糊模型。该方法包括三个阶段:在阶段I中,使用具有特殊适应性函数的遗传算法对输入变量和其他参数(例如隶属函数的数量和类型)进行自动选择,从而获得模糊模型的基本结构。第二阶段是对先前获得的模糊模型的大规模训练。最后,第三阶段是基于第一阶段的调整后的适应度函数,使用局部搜索算法对规则的权重进行后调整。提出了所提出的气体炉时间序列设计方法的应用,该方法是神经网络和模糊系统领域许多研究人员使用的著名基准数据集,最后,我们提出了与其他Box-Jenkins模型的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号