首页> 外文会议>International School of Physics "Enrico Fermi": Course CL Jun 25-Jul 5, 2002 Varenna >Quantum control of spins and excitons in semiconductor quantum dots
【24h】

Quantum control of spins and excitons in semiconductor quantum dots

机译:半导体量子点中自旋和激子的量子控制

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in semiconductor nano-optics opened the possibility of quantum manipulation of single excitons confined in quantum dots. We have shown explicitly how these quantum manipulations can be put together to solve a quantum algorithm. The perspective of using excitons as qubits is well within current experimental capabilities, but suffers an intrinsic limitation due to the short radiative lifetime of these objects. We have therefore analysed in sect. 3 the possibility of using excitons to mediate an interaction between charged quantum dots. The optical RKKY mechanism represents a powerful and clean tool for the realization of scalable systems, In this scheme the excitons enter as intermediate states and their short lifetime is not a limitation anymore. A simple experimental setup with two dots of different size and a tunable laser could be used to check the spin entanglement induced by the interaction proposed here. One of the limitations of the exchange between dots mediated by delocalized states is that it is not dot-selective. In the presence of an array of dots, delocalized states create an exchange interaction between all neighboring pair of dots in the system. Different dot sizes can give different effective couplings but all the interactions are switched on at the same time. One possible architecture to overcome this problem for the realization of a scalable system involves the use of near-field optical excitations. The dots in fact can be arranged in a chain separated by distances of the order of the wavelength of light. Then, quasi-delocalized states with sub-wavelength extension can be excited only between the two dots intended to be coupled. This possibility is well within the experimental state-of-the-art capabilities of near-field scanning optical microscopy. In such a system, universal quantum computation can be in principle realized only with the optically controlled exchange interaction, without recurring to single-qubit operation.
机译:半导体纳米光学的最新进展为限制在量子点内的单个激子的量子操纵开辟了可能性。我们已经明确显示了如何将这些量子操作组合在一起以解决量子算法。使用激子作为量子位的观点完全在当前的实验能力之内,但是由于这些物体的辐射寿命短而受到固有的限制。因此,我们在部分进行了分析。 3使用激子介导带电量子点之间相互作用的可能性。光学RKKY机构代表了用于实现可伸缩系统的强大而简洁的工具。在此方案中,激子进入中间状态,其短寿命不再受限制。具有两个不同大小的点和可调激光器的简单实验设置可用于检查由此处提出的相互作用引起的自旋纠缠。由离域态介导的点之间交换的局限性之一是它不是点选择的。在存在点阵列的情况下,离域状态会在系统中所有相邻的点对之间产生交换交互作用。不同的点大小可以产生不同的有效耦合,但是所有交互都同时打开。为了实现可伸缩系统而克服该问题的一种可能的体系结构涉及使用近场光激发。实际上,可以将点布置成由光的波长量级的距离隔开的链。然后,仅在打算耦合的两个点之间可以激发具有亚波长扩展的准离域状态。这种可能性完全在近场扫描光学显微镜的实验性最新技术能力范围内。在这样的系统中,原则上仅通过光学控制的交换相互作用就可以实现通用量子计算,而无需重复单量子位操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号