首页> 外文会议>International IPCO Integer Programming and Combinatorial Optimization Conference; 20040607-20040611; New York,NY; US >All Rational Polytopes Are Transportation Polytopes and All Polytopal Integer Sets Are Contingency Tables
【24h】

All Rational Polytopes Are Transportation Polytopes and All Polytopal Integer Sets Are Contingency Tables

机译:所有有理多面体都是运输多面体,所有多面体整数集都是列联表

获取原文
获取原文并翻译 | 示例

摘要

We show that any rational polytope is polynomial-time rep-resentable as a "slim" r x c x 3 three-way line-sum transportation poly-tope. This universality theorem has important consequences for linear and integer programming and for confidential statistical data disclosure. It provides polynomial-time embedding of arbitrary linear programs and integer programs in such slim transportation programs and in bipartite biflow programs. It resolves several standing problems on 3-way transportation polytopes. It demonstrates that the range of values an entry can attain in any slim 3-way contingency table with specified 2-margins can contain arbitrary gaps, suggesting that disclosure of κ-margms of d-tables for 2 ≤ κ < d is confidential. Our construction also provides a powerful tool in studying concrete questions about transportation polytopes and contingency tables; remarkably, it enables to automatically recover the famous "real-feasible integer-infeasible" 6 x 4 x 3 transportation polytope of M. Vlach, and to produce the first example of 2-margins for 6 x 4 x 3 contingency tables where the range of values a specified entry can attain has a gap.
机译:我们表明,任何有理多面体都是多项式时间代表的“苗条” r x c x 3三向线和运输多面体。该普遍性定理对线性和整数编程以及机密统计数据公开具有重要意义。它在这种细长的运输程序和二部双向流程序中提供任意线性程序和整数程序的多项式时间嵌入。它解决了三向运输多面体的一些常设问题。它表明,在任何带有指定2边距的苗条3向列联表中,一个条目可以达到的值范围可以包含任意间隙,这表明d表的κ-margin对于2≤κ

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号