首页> 外文会议>2018 International Conference on Smart Systems and Inventive Technology >Machine learning based Oozie Workflow for Hive Query Schedule mechanism
【24h】

Machine learning based Oozie Workflow for Hive Query Schedule mechanism

机译:用于Hive查询计划机制的基于机器学习的Oozie工作流

获取原文
获取原文并翻译 | 示例

摘要

Apache Oozie is a scheduler framework to run and oversee Hadoop jobs in a distributed environment. It enables various complex jobs, which is to be kept running in a sequential order to accomplish a greater task. In the task, at least two jobs can run parallel to each other without any ambiguity. There are two methods through which Oozie detects Completion of tasks as they are call back and pooling. In Oozie the workflow is a sequence of actions and these actions are arranged in a Directed acyclic graph (DAG) control dependency. These workflow actions can be hive action, pig action, shell action, java action etc, and by using decision trees one can decide how and on which condition a job should run.
机译:Apache Oozie是一个调度程序框架,用于在分布式环境中运行和监督Hadoop作业。它启用了各种复杂的作业,这些作业必须按顺序运行以完成更大的任务。在任务中,至少有两个作业可以彼此并行运行而没有任何歧义。 Oozie通过两种方法来检测任务完成情况,即回调和合并。在Oozie中,工作流是一系列操作,这些操作以有向无环图(DAG)控制依赖项的形式排列。这些工作流操作可以是配置单元操作,清管器操作,shell操作,java操作等,并且通过使用决策树,可以决定作业的运行方式和条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号