【24h】

An Adaptive PPM Prediction Model Based on Pruning Technique

机译:基于修剪技术的自适应PPM预测模型

获取原文
获取原文并翻译 | 示例

摘要

The key issue of Web prefetch ing is to establish an effective user prediction model, which can be used to make precision prediction of user browsing actions. Prediction by Partial Match (PPM) is one of the context mod-eJs used in the Web prefetching area. The high space complexity and low efficiency of the PPM prediction model affect its application. In this paper, we make use of pruning technique and propose a new adaptive PPM model based on Zipf's law and Web access characteristics. The experiments have shown that this model not only can be used to make predictions dynamically, but also has relative lower space complexity and higher prediction accuracy.
机译:Web预取的关键问题是建立有效的用户预测模型,该模型可用于对用户浏览动作进行精确预测。通过部分匹配(PPM)进行的预测是Web预取区域中使用的上下文模块之一。 PPM预测模型的高空间复杂度和低效率会影响其应用。在本文中,我们利用修剪技术并根据Zipf定律和Web访问特性提出了一种新的自适应PPM模型。实验表明,该模型不仅可以动态地进行预测,而且空间复杂度较低,预测精度较高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号