首页> 外文会议>2019 International Conference on Robotics and Automation >EasyLabel: A Semi-Automatic Pixel-wise Object Annotation Tool for Creating Robotic RGB-D Datasets
【24h】

EasyLabel: A Semi-Automatic Pixel-wise Object Annotation Tool for Creating Robotic RGB-D Datasets

机译:EasyLabel:一种用于创建机器人RGB-D数据集的半自动像素方式对象注释工具

获取原文
获取原文并翻译 | 示例

摘要

Developing robot perception systems for recognizing objects in the real world requires computer vision algorithms to be carefully scrutinized with respect to the expected operating domain. This demands large quantities of ground truth data to rigorously evaluate the performance of algorithms. This paper presents the EasyLabel tool for easily acquiring high-quality ground truth annotation of objects at pixel-level in densely cluttered scenes. In a semi-automatic process, complex scenes are incrementally built and EasyLabel exploits depth changes to extract precise object masks at each step. We use this tool to generate the Object Cluttered Indoor Dataset (OCID) that captures diverse settings of objects, background, context, sensor to scene distance, viewpoint angle and lighting conditions. OCID is used to perform a systematic comparison of existing object segmentation methods. The baseline comparison supports the need for pixel- and object-wise annotation to progress robot vision towards realistic applications. This insight reveals the usefulness of EasyLabel and OCID to better understand the challenges that robots face in the real world.
机译:开发用于识别现实世界中物体的机器人感知系统需要针对预期的操作领域仔细检查计算机视觉算法。这就需要大量的地面真实数据来严格评估算法的性能。本文介绍了EasyLabel工具,该工具可在混乱的场景中轻松获取像素级对象的高质量地面真相注释。在半自动过程中,将逐步构建复杂的场景,并且EasyLabel利用深度变化在每个步骤中提取精确的对象蒙版。我们使用此工具来生成室内杂乱无章的数据集(OCID),该数据集可捕获对象,背景,上下文,传感器到场景的距离,视点角度和照明条件的各种设置。 OCID用于对现有对象分割方法进行系统比较。基线比较支持对像素和对象进行注释的需求,以使机器人视觉朝着实际应用发展。这一见解揭示了EasyLabel和OCID有助于更好地理解机器人在现实世界中所面临的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号