首页> 外文会议>International Conference on Principles and Practice of Constraint Programming(CP 2004); 20040927-1001; Toronto(CA) >How Much Backtracking Does It Take to Color Random Graphs? Rigorous Results on Heavy Tails
【24h】

How Much Backtracking Does It Take to Color Random Graphs? Rigorous Results on Heavy Tails

机译:对随机图着色需要多少回溯?严格的尾巴测试结果

获取原文
获取原文并翻译 | 示例

摘要

For many backtracking search algorithms, the running time has been found experimentally to have a heavy-tailed distribution, in which it is often much greater than its median. We analyze two natural variants of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm for Graph 3-Coloring on sparse random graphs of average degree c. Let P_c(b) be the probability that DPLL backtracks 6 times. First, we calculate analytically the probability P_c(0) that these algorithms find a 3-coloring with no backtracking at all, and show that it goes to zero faster than any analytic function as c → c~* = 3.847... Then we show that even in the "easy" regime 1 < c < c~* where P_c(0) > 0 — including just above the degree c = 1 where the giant component first appears — the expected number of backtrackings is exponentially large with positive probability. To our knowledge this is the first rigorous proof that the running time of a natural backtracking algorithm has a heavy tail for graph coloring.
机译:对于许多回溯搜索算法,通过实验发现运行时间具有重尾分布,其中运行时间通常远大于其中值。我们在平均度为c的稀疏随机图上分析了图3着色的Davis-Putnam-Logemann-Loveland(DPLL)算法的两个自然变体。令P_c(b)为DPLL回溯6次的概率。首先,我们分析计算这些算法找到完全没有回溯的3色的概率P_c(0),并证明它比任何分析函数更快地归零,因为c→c〜* = 3.847 ...然后表明即使在“简单”状态下1 0-包括刚好出现巨分量的c = 1的正上方-预期的回溯数以正概率呈指数增长。据我们所知,这是第一个严格的证据,证明自然回溯算法的运行时间对图形着色有沉重的尾巴。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号