【24h】

Efficient Parallel Processing Methods for Transposing Matrices on Symmetric Multiprocessors

机译:在对称多处理器上转置矩阵的高效并行处理方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce two efficient algorithms (the transpose algorithm and the butterfly algorithm) of transposing matrices on symmetric multiprocessors (SMP). By employing hierarchical transposing, our algorithms allow overlapping between computation and communication and create more opportunities for parallelism. Simulation results show that our algorithms have less overhead than transposing matrices using the existing built-in collective communication function MPI Alltoall() (version MPICH 1.2.4). Simulation results also show that the relation between the overhead associated with our algorithms and the data size is approximately linear. As a comparison between the two proposed algorithms, the transpose algorithm is better than the butterfly algorithm when the data size is greater than a threshold, which is derived theoretically for the SMP. On the other hand, the butterfly algorithm requires more memory space than the transpose algorithm.
机译:在本文中,我们介绍了在对称多处理器(SMP)上对矩阵进行转置的两种有效算法(转置算法和蝶形算法)。通过采用分层换位,我们的算法允许计算和通信之间的重叠,并为并行性创造更多机会。仿真结果表明,与使用现有的内置集体通信函数MPI Alltoall()(版本MPICH 1.2.4)进行矩阵转置相比,我们的算法开销较小。仿真结果还表明,与我们的算法相关的开销与数据大小之间的关系近似为线性。作为两种建议算法之间的比较,当数据大小大于阈值时,转置算法要比蝶形算法好,这是理论上针对SMP得出的。另一方面,蝶形算法比转置算法需要更多的存储空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号