首页> 外文期刊>Parallel Computing >Parallelization Methods For Implementation Of A Magnetic Induction Tomography Forward Model In Symmetric Multiprocessor Systems
【24h】

Parallelization Methods For Implementation Of A Magnetic Induction Tomography Forward Model In Symmetric Multiprocessor Systems

机译:在对称多处理器系统中实现磁感应层析成像正向模型的并行化方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes four parallelization approaches used in a finite-difference-based electromagnetic modeller for application in magnetic induction tomography (MIT) and suitable for implementation on computer systems with symmetric multiprocessor (SMP) architecture. The approaches include: (i) splitting by coils using a distributed memory approach, (ii) splitting by physical domain using a distributed memory approach, (iii) splitting by physical domain using hybrid distributed/shared memory approach and (iv) splitting by both coils and physical domain using multi-level distributed and shared memory approaches respectively. All four approaches were implemented and tested on an IBM SP supercomputer. Coil parallelization was the most efficient method due to low inter-processor communication requirements but was limited by the number of coils in the MIT system. Approaches (ii) and (iii) allowed a larger number of processors to be employed but the efficiency versus number of processors was found to drop at a faster rate in comparison to (i). The fourth approach both allowed a larger number of processors to be employed and was found to provide higher efficiency than the parallelization by physical domain only. This multi-level hybrid approach therefore appears to offer an effective parallelization method for implementation of the MIT forward model on SMP clusters.
机译:本文介绍了四种基于有限差分的电磁建模器中的并行化方法,这些方法适用于磁感应层析成像(MIT),并且适合在具有对称多处理器(SMP)架构的计算机系统上实现。这些方法包括:(i)使用分布式存储方法按线圈划分,(ii)使用分布式存储方法按物理域划分,(iii)使用混合分布式/共享存储方法按物理域划分,以及(iv)两者均进行划分线圈和物理域分别使用多级分布式和共享存储方法。所有这四种方法都是在IBM SP超级计算机上实施和测试的。线圈并行化是最有效的方法,这是因为处理器之间的通信要求较低,但受到MIT系统中线圈数量的限制。方法(ii)和(iii)允许使用更多数量的处理器,但是发现效率(相对于处理器数量)的下降速度要快于(i)。第四种方法都允许采用更多数量的处理器,并且发现它们提供的效率比仅通过物理域进行并行化要高。因此,这种多级混合方法似乎为在SMP集群上实现MIT正向模型提供了一种有效的并行化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号