首页> 外文会议>International Conference on Machine Learning and Data Mining in Pattern Recognition(MLDM 2005); 20050709-11; Leipzig(DE) >Incremental Classification Rules Based on Association Rules Using Formal Concept Analysis
【24h】

Incremental Classification Rules Based on Association Rules Using Formal Concept Analysis

机译:基于形式概念分析的基于关联规则的增量分类规则

获取原文
获取原文并翻译 | 示例

摘要

Concept lattice, core structure in Formal Concept Analysis has been used in various fields like software engineering and knowledge discovery.In this paper, we present the integration of Association rules and Classification rules using Concept Lattice. This gives more accurate classifiers for Classification. The algorithm used is incremental in nature. Any increase in the number of classes, attributes or transactions does not require the access to the previous database. The incremental behavior is very useful in finding classification rules for real time data such as image processing. The algorithm requires just one database pass through the entire database. Individual classes can have different support threshold and pruning conditions such as criteria for noise and number of conditions in the classifier.
机译:形式概念分析中的概念格,核心结构已用于软件工程和知识发现等各个领域。本文介绍了使用概念格的关联规则和分类规则的集成。这为分类提供了更准确的分类器。本质上,使用的算法是增量算法。类,属性或事务数量的任何增加都不需要访问以前的数据库。增量行为对于查找实时数据(例如图像处理)的分类规则非常有用。该算法只需要一个数据库就可以遍历整个数据库。各个类别可以具有不同的支持阈值和修剪条件,例如噪音标准和分类器中的条件数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号