首页> 外文会议>International Conference on Life System Modeling and Simulation(LSMS 2007); 20070914-17; Shanghai(CN) >Satellite Cloud Image De-Noising and Enhancement by Fuzzy Wavelet Neural Network and Genetic Algorithm in Curvelet Domain
【24h】

Satellite Cloud Image De-Noising and Enhancement by Fuzzy Wavelet Neural Network and Genetic Algorithm in Curvelet Domain

机译:基于模糊小波神经网络和遗传算法的卫星云图像去噪与增强

获取原文
获取原文并翻译 | 示例

摘要

A satellite cloud image is decomposed by discrete curvelet transform (DCT). In-complete Beta transform (IBT) is used to obtain non-linear gray transform curve so as to enhance the coefficients in the coarse scale in the DCT domain. GA determines optimal gray transform parameters. Information entropy is used as fitness function of GA. In order to calculate IBT in the coarse scale, fuzzy wavelet neural network (FWNN) is used to approximate the IBT. Hard-threshold method is used to reduce the noise in the high frequency sub-bands of each decomposition level respectively in the DCT domain. Inverse DCT is conducted to obtain final de-noising and enhanced image. Experimental results show that proposed algorithm can efficiently reduce the noise in the satellite cloud image while well enhancing the contrast. In performance index and visual quality, the proposed algorithm is better than traditional histogram equalization and unsharpened mask method.
机译:卫星云图像通过离散曲波变换(DCT)分解。使用不完全Beta变换(IBT)获得非线性灰度变换曲线,以增强DCT域中粗尺度的系数。 GA确定最佳的灰度变换参数。信息熵被用作遗传算法的适应度函数。为了在粗尺度上计算IBT,使用模糊小波神经网络(FWNN)近似IBT。硬阈值法用于减少DCT域中每个分解级别的高频子带中的噪声。进行逆DCT以获得最终的去噪和增强的图像。实验结果表明,该算法能够有效降低卫星云图图像中的噪声,同时又能很好地增强对比度。在性能指标和视觉质量上,该算法优于传统的直方图均衡和不锐化的蒙版方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号