首页> 外文会议>International Conference on Inductive Logic Programming(ILP 2005); 20050810-13; Bonn(DE) >Automatic Induction of Abduction and Abstraction Theories from Observations
【24h】

Automatic Induction of Abduction and Abstraction Theories from Observations

机译:根据观察结果自动归纳绑架和抽象理论

获取原文
获取原文并翻译 | 示例

摘要

Traditional Machine Learning approaches are based on single inference mechanisms. A step forward concerned the integration of multiple inference strategies within a first-order logic learning framework, taking advantage of the benefits that each approach can bring. Specifically, abduction is exploited to complete the incoming information in order to handle cases of missing knowledge, and abstraction is exploited to eliminate superfluous details that can affect the performance of a learning system. However, these methods require some background information to exploit the specific inference strategy, that must be provided by a domain expert. This work proposes algorithms to automatically discover such an information in order to make the learning task completely autonomous. The proposed methods have been tested on the system INTHELEX, and their effectiveness has been proven by experiments in a real-world domain.
机译:传统的机器学习方法基于单一推理机制。向前迈出的一步涉及在一阶逻辑学习框架中集成多种推理策略,并利用每种方法可以带来的好处。具体而言,利用绑架来完成输入信息以处理知识缺失的情况,并利用抽象来消除可能影响学习系统性能的多余细节。但是,这些方法需要一些背景信息来利用特定的推理策略,这必须由领域专家提供。这项工作提出了自动发现此类信息的算法,以使学习任务完全自主。所提出的方法已在系统INTHELEX上进行了测试,其有效性已通过在实际领域中的实验证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号