首页> 外文会议>International conference on high performance computing, networking, storage and analysis 2009 >Predicting the Execution Time of Grid Workflow Applications through Local Learning
【24h】

Predicting the Execution Time of Grid Workflow Applications through Local Learning

机译:通过本地学习预测网格工作流应用程序的执行时间

获取原文
获取原文并翻译 | 示例

摘要

Workflow execution time prediction is widely seen as a key service to understand the performance behavior and support the optimization of Grid workflow applications. In this paper, we present a novel approach for estimating the execution time of workflows based on Local Learning. The workflows are characterized in terms of different attributes describing structural and runtime information about workflow activities, control and data flow dependencies, number of Grid sites, problem size, etc. Our local learning framework is complemented by a dynamic weighing scheme that assigns weights to workflow attributes reflecting their impact on the workflow execution time. Predictions are given through intervals bounded by the minimum and maximum predicted values, which are associated with a confidence value indicating the degree of confidence about the prediction accuracy. Evaluation results for three real world workflows on a real Grid are presented to demonstrate the prediction accuracy and overheads of the proposed method.
机译:工作流执行时间预测被广泛视为了解性能行为并支持Grid工作流应用程序优化的关键服务。在本文中,我们提出了一种基于本地学习来估算工作流执行时间的新颖方法。工作流以不同的属性为特征,这些属性描述了有关工作流活动,控制和数据流依赖性,网格站点的数量,问题大小等的结构和运行时信息。我们的本地学习框架得到了动态权重方案的补充,该方案为工作流分配了权重属性反映它们对工作流程执行时间的影响。预测是通过以最小和最大预测值为边界的间隔来给出的,该最小和最大预测值与指示关于预测准确性的置信度的置信度值相关联。给出了在真实网格上的三个真实世界工作流的评估结果,以证明所提出方法的预测准确性和开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号