首页> 外文会议>International Conference for High Performance Computing, Networking, Storage and Analysis >Stacker: An Autonomic Data Movement Engine for Extreme-Scale Data Staging-Based In-Situ Workflows
【24h】

Stacker: An Autonomic Data Movement Engine for Extreme-Scale Data Staging-Based In-Situ Workflows

机译:Stacker:一种自动数据移动引擎,用于基于超大规模数据分阶段的现场工作流

获取原文
获取原文并翻译 | 示例

摘要

Data staging and in-situ workflows are being explored extensively as an approach to address data-related costs at very large scales. However, the impact of emerging storage architectures (e.g., deep memory hierarchies and burst buffers) upon data staging solutions remains a challenge. In this paper, we investigate how burst buffers can be effectively used by data staging solutions, for example, as a persistence storage tier of the memory hierarchy. Furthermore, we use machine learning based prefetching techniques to move data between the storage levels in an autonomous manner. We also present Stacker, a prototype of the proposed solutions implemented within the DataSpaces data staging service, and experimentally evaluate its performance and scalability using the S3D combustion workflow on current leadership class platforms. Our experiments demonstrate that Stacker achieves low latency, high volume data-staging with low overheads as compared to in-memory staging services for production scientific workflows.
机译:数据暂存和原位工作流正在被广泛研究,以作为解决大规模数据相关成本的方法。然而,新兴的存储架构(例如,深存储器层次结构和突发缓冲器)对数据分级解决方案的影响仍然是挑战。在本文中,我们研究了数据分段解决方案如何有效地使用突发缓冲区,例如,将其用作内存层次结构的持久性存储层。此外,我们使用基于机器学习的预取技术以自主方式在存储级别之间移动数据。我们还介绍了Stacker,它是在DataSpaces数据分级服务中实现的拟议解决方案的原型,并使用当前领导层平台上的S3D燃烧工作流,通过实验评估了其性能和可伸缩性。我们的实验表明,与用于生产科学工作流程的内存中转台服务相比,Stacker可实现低延迟,高容量的数据转台,且开销也较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号